
11

ESSAYS
OF 2018

Reflections on Software Leadership

LEADING
SMART PEOPLE

2

Welcome

2018 was a pretty good year. I taught
workshops in San Francisco, Oregon
and Berlin, coached people from
around the world, and developed
Software Leader Seminar, a self-
paced leadership course. But the
thing I’ve worked hardest on, and the
thing I’m proudest of, is my writing.
My goal has always been to connect
with people, both managers and
developers, and help them learn
how to build – and be part of – happy
teams that produce valuable work.

With that in mind, I decided to collect
some of my best writing from 2018
and offer it to you here in one place.
Any collection of pieces written
over time has a few oddities – bits
of chronology that don’t quite fit,
references to current (now in the
past) events. But overall, I hope you
can find as much usefulness in these
articles as my original readers did. So
read on for 2018’s best!

MARCUS BLANKENSHIP

01
02
03
04
05

06
07
08
09
10
11
12
13
14
15
16

17
18

19

The Real Work of Software Management - Part 1

The Real work of Software Management - Part 2

7 Tips to Successfully Micromanage Programmers

The Wrong Section of the Bookstore

The Science of Happy Developers: How to Improve Your
Dev Team’s Mojo ...

Onboard People, not Technology ..

Why Your Programmers Fantasize about a Big Rewrite

Why Your Programmer Just Wants to Code

A Wake-Up Call for Tech Managers ...

Let’s Stop Learned Helplessness in Software Engineering....

The Surprising Misery of Empowered Teams

Advanced PeopleOps - 1:1 Retrospectives

The Myth of Many Hands ..

The 4-Letter Word That Makes My Blood Boil

Your Agile Assembly Line Workers ..

Why Software Quality Is So Confusing (And How We Can
Fix It)...

The Trap of Sales-Driven Development

The Unexpected Danger of Typecasting in Engineering
Teams ..

9 Lessons from Teams Who Anticipate Learning

04

12

20

24

34

39

43

46

51

56

64

66

72

80

84

90

97

100

107

4

The Real Work of Software
Management - Part 1

I recently received an email from a reader, Anton, asking
this question: How do I balance management with real
work?

This is a common question. What Anton wants are tools to help him
manage his time and his workload. He’s having trouble “doing it all,”
which is a symptom of a larger problem. The underlying problem is
the mindset that management is not “real” work.

The most important aspect of time management is prioritization. If
you don’t understand that management work is THE priority, any
time-management techniques you use are bound to fail.

So, before I talk about tactics to balance demands, time

5

management, prioritization and the like, I want to step back and
address the mindset question. Because if you don’t get the mindset
right, then the tactics are only a short-term Band-Aid solution that
temporarily masks the larger problem.

Management Is Real Work

Let me be as clear as possible: Management IS real work.

Any view that fails to put your management responsibilities first
will fail you in the long-term. You might get away with it for a while,
and at times it might seem like it’s working for you, but it’s a losing
strategy. Even worse, most managers who hold this flawed mindset
find out too late that it’s failed them. Projects are delivered late,
teams fail to adapt to new demands, employee turnover increases
and customers get very frustrated. All of this is because the

You might be called a Lead
Programmer, Team Lead,
IT Manager, Department
Manager, Project Manager
or CTO. If you’re responsible
for overseeing programmers,
then this is for you.

6

manager isn’t focused on managing their team. Instead, they’re still
programming.

Quick note: I realize that different organizations use different
titles, but I’m going to use the term “Software Manager” to refer to
someone who is responsible for the work of programmers. You might
be called a Lead Programmer, Team Lead, IT Manager, Department
Manager, Project Manager or CTO. If you’re responsible for overseeing
programmers, then this is for you.

What Is Real Work?

In my experience, real work is defined as effort that produces value
for an organization. Ditch diggers produce valuable ditches for an
organization. It is clearly real work.

Software developers create valuable software for an organization.
Even if the ditch diggers don’t agree, software development is also
real work.

Software managers create valuable software development teams for
an organization. Again, even if the software developers don’t always
agree, software management IS real work.

So what value does a software manager produce?

As a software manager, you provide value to multiple groups in
the organization. Your work is more important than that of any
one individual programmer because you are a force multiplier.
You create a team that is greater than the sum of its parts. Some
examples of where software managers create value:

They provide value to their team by...

7

1. Ensuring the right members are on the team and that they
receive the right training,

2. Creating a productive work environment appropriate for
software development,

3. Ensuring the team has the best tools possible, and
4. Protecting the team from organizational distractions and

politics.

They provide value to their up-chain management by...

1. Ensuring management understands the value of the software
the team creates,

2. Ensuring that the team’s efforts support organizational goals,
and

3. Ensuring that team turnover is low and the members are high-
performing contributors.

They provide value to their customers by...

1. Listening to customer’s needs and goals,
2. Ensuring that the right software is delivered at the right time, to

the right people,
3. Collaborating with the customer about team priorities to

deliver the highest priority items soonest, and
4. Taking customer feedback to the team so that the team can

improve.

Why Management Must Be Your ONLY Job

No one else on the team can do it.

You are not “one of the gang.” Sorry if you don’t like this, but your
team knows it, so don’t get confused and act like it isn’t true. You
are unique in your group; you are their manager and leader. You

8

have more authority than they do, and everyone knows it.

You are also responsible for the work the team does, the successes
and failures of the team. The organization put you in charge to
LEAD and MANAGE this group, and when things go wrong, they
expect that you will take full responsibility for the problem. This is
something only you can do.

Finally, you control the teams’ attitude, productivity and working
environment. You control who is on the team and who is not on
the team. You sit in a unique position to lead, inspire, direct and
manage. You alone are appointed to do this work.

Sound terrible? Well, the saying “It’s lonely at the top” isn’t
hypothetical. It’s very real, and at times, being the manager feels
very lonely. Not always, but sometimes. Your job and the jobs of
your team members depend on you creating a team that can deliver
the right software, at the right time, to the right people.

If you fail to create a team that delivers software, your management
(or your customers) will replace you with someone who will. This
might sound harsh, but if you can’t do it, they will find someone
who will. Besides, the livelihood of every member of your team
depends on your ability to create a team that can deliver software!
Teams that don’t deliver get cut during down-sizing, right-sizing
and re-organization efforts. Remember, executive management is
always keeping any eye on the cost vs. value ratio, so it’s up to you
to make sure your team is consistently delivering value.

In addition, you’ve got to promote the great work your team is
doing to your manager through status reports, demonstrations and
customer testimonials. You are the PR department for your team,
and you’ve got to make sure their good work gets noticed!

9

Finally, your team needs constant mentoring, training and coaching
to stay sharp and keep growing. Managers that neglect this put
their team members at risk, because the poor performers and
“dinosaurs” are always the first to be cut when times are tight.
Employees ALWAYS want more training, and managers who don’t
provide this do their team a great disservice.

Why Management Is Work Worth Doing

When I was first promoted to team lead, I was excited and proud. I
was eager to tell my dad about my promotion.

As I returned to work, I looked at my team differently.

The brilliant programmers on my team wanted and deserved a good
manager, someone who was willing to serve, protect, encourage,
discipline and mentor them to do great things. Someone who
was willing to put aside their love of programming to do the hard,
uncomfortable, dirty work of management. Your team needs the
same things.

The number one description of Bad Bosses that I hear from
Programmers is this: “My manager didn’t want to manage. He just
wanted to code.”

When you got promoted, the team knew exactly what it meant: you
are now their boss.

He put his hand on my shoulder and said,
“Son, your team deserves a good manager. Don’t

let them down.”

10

Unfortunately, too many managers try to act like their team’s best
friend. They want to live in a fantasy world where everyone likes
them, there are no difficult decisions, and everyone works together
without any need for guidance or direction.

Symptoms of this problem are…

1. Unwillingness to take responsibility when problems arise,
2. Unwillingness to delegate clearly and directly,
3. Unwillingness to set clear expectations about how the work is

done and when it is needed, and
4. Unwillingness to discipline disrespect and poor performance.

If you’re not doing these things, you are not the manager your
team wants or needs. Your misplaced need to be accepted by them
has overshadowed the real need to create a valuable software
development team. You are putting everyone at risk, and your team
knows it.

Management is real work. It is your work. It’s important work,
and it’s work worth doing well. It deserves your time, focus and
attention. Like programming, it’s a skill that improves with focus
and time.

Now, poor Anton still needs to know how to manage his time,
balance competing priorities, and find time to look up from his
work. But I hope that he sees that having the management mindset
must come first.

Next, we’ll look at how everything managers do is “managing,”
whether it’s shooting the breeze at the coffee machine or sitting in
a customer meeting. You might be surprised at all the forms that
“managing” can take.

11

Management is real work. It
is your work. It’s important
work, and it’s work worth
doing well. It deserves your
time, focus and attention.

12

People who don’t
“add value” don’t
last long at any
organization.

S ix months into the job, I started to wonder if being a Team
Lead was for me. While I felt important being included in so
many meetings, my new job didn’t feel nearly as valuable as

my old one. It felt like I didn’t do anything besides sit in meetings or
send email. I missed the feeling of accomplishment I used to have at
the end of each day when I could see (and show!) the results of my
efforts.

I also started to fear that others wouldn’t feel I was doing anything
important either. Imaginary conversations played through my mind
where team members snickered behind my back or my boss wanted
to replace me. After all, people who don’t “add value” don’t last long
at any organization, and I certainly didn’t feel I was adding much
value!

The Real Work of Software
Management - Part 2

13

I dove back into the IDE, trying to code my way into feeling good.
This resulted in a dozen half-built projects, which gave me the
feeling I was doing real work, but none of it actually got shipped to
customers. Worse, now I had a dozen more things to finish hanging
over my head! But at least I had gotten some “real work” done that I
could show my boss and team (in case they ever asked).

When I finally brought up the subject with my boss, my questions
came spilling out: “How am I doing at this management thing? I feel
like I don’t do anything, but I’m busy and stressed out all the time.
Maybe I should just go back to coding.”

He leaned back in his chair, a knowing half-smile on his face. “You’re
doing fine. Your new job is to build your software team and keep it
running smoothly, so they produce what’s needed. Let’s look at how
your activities in the past few months are doing that…”

He went on to show me the why behind the what of all my
“meaningless” activities. I had learned what to do from watching
him and other managers, but I’d only been mimicking their actions
without understanding why they were important. This is a normal
way to learn something new, but now it was holding me back. I
needed to get to the next level.

As he connected the dots for me, my guilt over not coding eased.
The fears that my team would think I was a slacker melted away as I
saw that my management job had purpose and value. I was the only
one on the team who was in the position to do it, and I could see
what would happen if the job wasn’t done well.

As I found the reasons behind the actions of leading my team, I
learned that “Everything you do is Management.” Recall from my

14

last article that successful software managers know their only job is
to create teams that deliver valuable software for their organization.
All of their activities are in support of that goal, no matter how little
it looks like management.

Let’s look at four things good managers do that might not look
anything like management to you…

1) “Just Visiting” With Your Team Members

You build trust with your team when you take the time to visit
with them, individually or collectively. When you learn about their
families, hobbies or weekend activities, you show that you care
about them. People follow leaders they know care about them,
their families and their goals. Building individual relationships
through actively listening to their struggles, coaching them through
challenges and keeping their confidence is vital to effective team
management. Visiting with them in casual situations is when this
magic happens.

To the outsider, this might look like “shooting the breeze” or
“slacking off,” but the experienced manager knows that the more
she invests in relationships with her team members, the more
enthusiastically they will follow her leadership. She knows most
people want a boss who cares about them, and in return they will
“go down with the ship” for her.

If this is a challenge for you, try keeping a short file or notepad on
each employee. Knowing their spouse’s name and occupation, the
names and ages of their kids, what they enjoy doing on vacation
and other personal information is too important to miss. During
your 1:1 meeting with them, ask about their challenges, what

15

projects and activities they enjoy or find frustrating, and what their
goals are.

Don’t mistake this advice for just acting like you care about them.
You actually have to care about your team members, each and every
one of them. If you’re struggling with this, you need to step back
and ask yourself if they are the right fit for your team, or else you
might be subconsciously trying to sabotage their efforts or playing
favorites.

2) Helping to Get the Project Shipped out the Door

When you are doing technical work side by side with the team,
you are observing and improving your team’s skills. It doesn’t
matter if this is coding, debugging, architecting, testing or writing
documentation. Managers who pitch in know this is a prime time
to invest in their team’s training, give informal feedback and judge
skills up close.

Early in my career, my manager and I were working shoulder to
shoulder to fix some critical systems, working late into the night.
About 11:30 pm the VP of Information Systems (two steps above
my manager on the corporate ladder) appeared to see if we needed
anything or if he could help. When he heard we had not eaten
dinner, he bought sodas and pizza, thanked us for our dedication
and told us he was confident we would get it fixed. He stayed about
an hour and then slipped away quietly. I never forgot that he cared
enough to drop by and see if he could help, and he did help, as I was
getting really hungry!

Good managers practice servant leadership, making sure the
greatest needs of others are being served. They never hesitate to

16

invest in their team, knowing that this effort pays back tenfold. Your
programmers want to get better at their jobs, they want to improve,
and when they do, it benefits you and the company.

Additionally, managers who spend time mentoring their staff create
a “train the trainers” culture. This culture encourages programmers
to help each other and makes onboarding new developers much
easier. Finally, training requires sharing yourself and what you know,
which increases the bond between you and your team. People
appreciate being trained and invested in, and they pay it forward to
others when given the chance.

3) Meeting with Customers

Has your team ever asked, “Why do they want this feature?” or
“Why is this due-date important?” These two questions represented

17

90% of the push-back I got from my team, and they weren’t being
disrespectful. They were ensuring that the feature and deadline
deserved their commitment.

You see, your team fears investing themselves in work and deadlines
that don’t matter. These fears aren’t hypothetical. Most of us have
sacrificed our evenings and weekends to hit a due-date that turned
out to be unimportant to the customer. We’ve put our sweat and
blood into solving hard problems only to learn that the customer
didn’t care about the feature. When that happens, we wither inside.
We feel deceived; we stop giving 100%. We become cynical, and we
start protecting ourselves. We ask those two questions because we
don’t want to be hurt again.

The solution? Meet with your customers regularly and make sure
the work and deadlines are important. Don’t commit to them
unless you are convinced, and keep asking questions until you have
answers. Meeting with your customers to learn the specifics of why
projects and deadlines are important is the only remedy. I know this
might feel like “yet another meeting,” but if you don’t believe in the
projects and features, you can never defend them to your team.

Poor managers often have the attitude, “We just do what we’re told,
we don’t ask why.” That’s not management, it’s cowardice. You must
ensure your team has valid answers for these questions, or you must
tell the customers “No.” You sit in the gap, even in the most agile
organizations, and you need to have answers to these questions at
your fingertips.

You must meet with your customers regularly, and you must
communicate what you learned back to your team. It is fundamental
to protecting the health and morale of your team.

18

4) Empowering Your Team, and Letting Them Make Decisions

When you are listening to your team in meetings and work sessions,
you are building trust by sharing control. This might not look like
management to the uninitiated, but good leaders listen to their
team’s ideas, concerns and opinions. They know that simply holding
the title of manager does not make them smarter than everyone
and that the best way to earn trust is to give it.

Listening is a prerequisite to trust building. It shows that you can
put your agenda aside and let someone else lead the discussion.
The confidence to let others speak and be heard helps others trust
you. Many times I’ve heard employees say, “I didn’t like the final
decision, but I appreciated that he took my viewpoint into account.”

If good leaders listen, then great leaders let the team make the
decision, gently guiding along the way. They know that when the
team makes the decision, they will be committed and excited about
what needs to be done. The manager doesn’t need to force their
will. They simply need to ensure the team has the best knowledge
of goals and constraints (often called “context”) to make good
decisions. It might appear that managers who let their teams make
decisions are abdicating their role, but in reality, they are trading a
small amount of control for a large amount of enthusiasm and team
building. As Kent Beck says in Extreme Programming Explained,
“There is no substitute for enthusiasm.” I couldn’t agree more.

As the months continued, I became more confident in my new
management role. I saw that everything I did was aligned with
growing, protecting and guiding my team, even at the coffee
machine. I realized that in some ways, management has something
in common with parenting: teams, like kids, are always watching to

19

see how I behave, so I’d better
be setting a good example. As
the years went on, I became
subtler and more intentional in
my management style. I learned
the importance of caring for
and serving my team members,
of letting others make the
decisions, and of protecting
the team from demotivating
arbitrary tasks and deadlines.

Next time we’ll talk about
how not to manage. In the
meantime, hang out around the
coffee machine and visit with
your team!

It might appear that
managers who let their
teams make decisions are
abdicating their role, but in
reality, they’re trading a small
amount of control for a large
amount of enthusiasm and
team building.

20

7 Tips to Successfully
Micromanage Programmers
A bit of satire to make you smile

S ince most programmers only want to write code and
don’t actually care about what problem they are solving,
you need to learn to effectively micromanage them.

Without this, you will have endless discussions about frameworks,
tools, ideas, process and the like. This will occur ad nauseam until
you tell them what to do. Deep down, programmers want to be told
what to do, how to do it, and when to do it. They often pretend this
isn’t the case, but don’t let that fool you.

Their best friend, the compiler, is also extremely picky and
demanding, which gives them a feeling of security and good
boundaries. Either a program compiles, or it doesn’t. Your
management should have the same ring of absoluteness to it.

21

You might think that micromanagement is a lot of work, and you’d
be right. You always have to be “on,” even during nights, weekends
and vacations. But with these seven tips, you know you’ll be
spending your time effectively and creating a fast-moving team.

Remember you own them. They are YOUR programmers, and you
are THEIR boss. This century’s old dynamic is a classic for a reason:
it works. If it’s good enough for the Romans, monarchies and Henry
Ford, it’s good enough for us. Make sure you never waiver on who
makes the decisions on your team.

Tell them exactly how to do it. Create very detailed “specs” that
outline everything that needs to be done. Include the architecture,
frameworks, database schema, object diagrams, function
signatures, naming conventions, everything you can think of. Don’t
leave anything to chance. Don’t worry if you have flaws in the spec

You might think that
micromanagement is a lot of
work, and you’d be right.

22

– this is an opportunity for them to “problem solve,” which many of
them claim to enjoy. This detailed specificity about WHAT work is
done will set the bar high and keep your developers productive!

Tell them exactly how to work together. Create flowcharts and
role assignments. Remember, your team wants to be assembled
together like cogs, and the team works best when each member has
a very specific role. Discourage people from working together, to
build experts in each role. Create formal communication channels
and expect your employees to use them. They will appreciate that
you have figured out the best way for them to work and be efficient.

Figure out the BEST way to do things for them. Programmers
only want to write code, so you should figure out the BEST design,
framework, coding standards, timeframes, role delegation, etc.,
in advance. Your programmers will trust your judgement and feel
secure that you know best. This also leaves them plenty of coding
time, which makes them happy.

Hold their toes to the fire. All good project managers know that
teams work best under pressure, with challenging deadlines. This
brings out the best in people, and they love rising to a challenge!
If things start to slip, begin making passive-aggressive comments
and veiled threats. This will show people that the deadlines are
important, and they will shift into high-gear!

Check in multiple times each day to change direction.
Programmers tend to drift and get distracted, so help them focus
by checking in with them frequently. There’s no need to have
something valuable to say – your mere presence will remind them to
work harder.

Email, slack and call them late at night and on weekends. This
is key to keeping up momentum through the long weekends and
holidays. They will know you care about them when you call at 10

23

p.m. with a new feature idea or email them at 2 a.m. about a new
bug. They will also know you’re working hard and will be reminded
that they should be too. You’ll win admiration and respect for your
work ethic. Can’t stay up until 2 a.m.? Just schedule your emails to
be sent at a specific time. No one will be the wiser.

With these seven tips you can increase your teams’ output while still
having time to golf over a long lunch.

If you hear complaints or murmurings, remind your team how lucky
they are to have a job and that there are many other people lined up
to take their place if they make trouble.

You’ve heard about the benefits of micromanaging, now you have
actionable advice to start getting things done. Good luck!

24

Instead of focusing
only on the leader,
LMX Theory studies
the relationships
the leader has with
their individual
employees.

I ’ve always loved books. As a teenager, I spent weekends
browsing the Sci-Fi section of the book store, eventually
migrating to the Computer Programming section. Many happy

hours were spent among those shelves.

After I had become a Team Lead, I noticed my browsing habits
slowly changed. I started to take an interest in the Business and
Leadership section. As a die-hard nerd, I felt pretty uncomfortable in
this new section.

The covers of the books all showed these fit, tan, well-dressed
people.

I didn’t match any of those attributes, but I was drawn to the

The Wrong Section of the
Bookstore

25

promises I found on those book covers.

I was struggling with my new management role. The technology
didn’t trouble me. It was my team. This alien section of the book
store promised to help me lead, inspire and motivate my team,
solving all my problems.

So, I bought and read many of these books. But instead of turning
into a great leader as they promised, I felt more disconnected and
discouraged than ever.

Part of the problem was that these books described people who
seemed so different from me. No matter how hard I tried, emulating
them felt unnatural and forced.

Fast forward a few years: after much trial and error, I had finally
found a management style that worked for me. I heard it described
as MBWA, or Management By Wandering Around. My team called it
the “How’s it going?” approach. They seemed to like it, and I found it
a useful and productive way to manage my team.

LMX Theory

One night, while browsing material about Leadership Theories on
the internet, I came across a term I’d never seen before: Leader-
Member Exchange Theory (LMX Theory). Excitedly, I realized that
this approach matched my own experience, and the research
into the theory suddenly gave me the why behind the what of my
practices.

According to the Oxford Handbook of Leader-Member Exchange,
by Talya Bauer, LMX theory “views the dyadic relationship quality
between leaders and members as the key to understanding leader

26

effects on members, teams, and organizations.” Huh?

Instead of focusing only on the leader, LMX Theory studies the
relationships the leader has with their individual employees.
The result? LMX studies have found that a huge factor in an
employee’s job performance and job satisfaction is their
relationship with their manager.

It’s not about being a born leader. It’s about creating great
relationships with your team.

However, there’s a catch.

LMX theory asserts that leaders form high-quality, trust, affect and
respect-based relationships with a subset of their team, whereas
with other members, they tend to have a lower-quality exchange
that is limited to the employees’ and leader’s job descriptions.

That is, you have great relationships with some people on your team
and maybe not-so-great relationships with other people on your
team.

This results in two distinct groups, the “in-group” and the “out-
group.”

Your great relationships display trust, affection and
respect. But your poor relationships are shallower
because they only focus on the duties both parties

have according to their job descriptions.

27

My In-Group and Out-Group

Of course, I liked some people on my team more than others. I’ll bet
you do too. It’s only natural. Without realizing it, I was letting my
team relationships be dictated by matches between personality or
interests rather than intentionally investing in all my relationships.
Looking back, this uneven investment created my in-groups and
out-groups.

This had significant consequences for my team. I trusted my in-
group more. They got the better assignments. I was more likely
to recommend them for promotion. I was more likely to overlook
problems and give them the benefit of the doubt. I spent more time
in casual, friendly conversation and had deeper, more personal
relationships with them. I was more likely to mentor them and
invest in them.

At the same time, I worried more about my out-group. I watched
them more closely, questioned their judgment and decisions, and
felt they were less reliable. I held them at arm’s length, being more
“professional,” and they did the same to me. I was more likely to
give them mundane assignments and less likely to have personal
discussions with them. I didn’t invest in them as much, and I didn’t
spend time mentoring them. I didn’t think of them as “bad,” but I
didn’t describe them as my “superstars” either.

Traditional Leadership Theories

Let’s go back to those calm, confident, attractive leaders on those
book covers: They almost all represented traditional leadership
theories that can be lumped into a category called the “Great Man
Theory.” This theory emphasizes the special qualities of great

28

military, political and business leaders throughout history.
Though I found it fascinating to read about these people, I didn’t
find it useful in my management work. When I tried to act like these
“great men,” it came across as fake to my team, which hurt my
relationship with them.

How LMX Theory Is Different

Instead of trying to change myself to be more like history’s great
leaders, LMX Theory prioritizes something we are all born knowing
how to do: create strong relationships with people.

Let’s go back to that phrase “dyadic relationships.” A dyad is
something that consists of two elements or parts. In this case, the
two parts are you and each team member. Let me be clear – this isn’t
your relationship with “the team,” this is your relationship with the
individuals who make up your team, not the group that is your team.

The early developers of LMX wanted to understand and measure
the impact of the boss–employee relationship on the employee.
What they found was that bosses have an astoundingly high impact
on their employees’ job performance and job satisfaction. In fact,
Gerstner and Day, in an academic study published in the Journal of
Applied Psychology, 1 went so far as to say that “The relationship
with one’s boss is a lens through which the entire work experience is
viewed.”

In addition, Gallup’s 2015 report “The State of the American
Manager”, 2 says that “Managers account for at least 70% of the
variance of employee engagement scores across business units.”

In short, managers matter. A lot. Not managers acting like “great

29

When I tried to act like
these “great men,” it
came across as fake to
my team.

30

men,” but managers who create strong relationships with their
team.

The Good News

The good news is that we all have experience creating human
relationships. We know how to create and invest in friendships,
establish and nurture romantic relationships, and have strong,
trusted professional relationships with our peers.

So, we already have the tools we need to start creating great
relationships. As Robert Fulghum’s brilliantly titled book reminds
us, All I Really Need to Know I Learned in Kindergarten. (This book is
a gem, and you should pick it up if you haven’t already read it.)

So, if manager–developer relationships matter, and we know we’re
good at creating relationships with other people, let’s put in place
some actions that create great relationships with our team.

The goal is to do things that move people from the out-group to the
in-group so that everyone enjoys the benefits of greater productivity
and job satisfaction.

Step 1: Take Inventory

First, now that you know how important this is, I suggest that you
take an inventory of your relationships with your team members.
Make a list of each person on your team and rate the relationship
you have with them on a HIGH–MEDIUM–LOW scale.

As you look at your ranking, can you start to see members of your
in-group? Everyone not in your in-group is automatically in your

31

out-group. Place an “I” or an “O” next to their name.

Step 2: Commit to Small Improvements

Now you need to figure out ways to move people into your in-group.
You’re trying to improve individual relationships, so you’ll probably
choose different actions and questions for each person. Think about
what you know and don’t know about the person. Like Ed Schein
suggests in his book Humble Inquiry, “access your ignorance”
to become honestly curious about the other person. Couple this
curiosity with honest caring about the person to engage them in
more personal and important discussions.

Next, to the name of each person in your out-group, write a note
about how you’d like to improve your relationship or get to know
them better. Jot down a question you’d like to ask or a topic you’d
like to discuss with them and when you’ll do it. I suggest using your
one-on-one meeting to do this, or possibly a coffee or lunch meeting
where you can talk privately.

Step 3: Try, Try Again

Relationships take time to build, so don’t expect folks in the out-
group to open up to you immediately. Your mantra should be to
“try, try again” until you earn their trust. Remember, they might
be in the out-group because your personalities didn’t immediately
“click.” You probably haven’t invested enough energy or time into
your relationship with them. It’s understandable that they might
be suspicious of your motives. I suggest being upfront about your
motives: you want to have a better professional relationship with
them. You hope to establish better communication, trust and
collaboration with them.

32

Making relationship building a regular part of your meetings and
discussions will impress upon your team members that you care
about them, that you want a deeper professional relationship with
them.

I’ve found I have to try about a dozen times before someone starts
to believe I that want a different relationship. Consistency is key
here. If you give up trying, they may feel your effort wasn’t sincere,
which will make the relationship worse. And of course, you have to
actually care about them. We can all sense when someone is faking
interest in us, and it quickly leads to distrust.

Your relationship with your team matters a tremendous amount,
more than most managers realize. LMX Theory is the science that
proves this and gives us a framework for seeing our team that
illuminates great differences in job performance and job satisfaction
between the in-group and out-group.

While it may not be possible to move everyone from the out-group
to the in-group, regular relationship building activities with your
out-group moves interested members into the in-group and opens
up new possibilities for trust, collaboration and deeper professional
relationships.

Take responsibility for not initiating this sooner, but
remind them that it’s never too late for things to

improve.

33

Be Yourself

Learning to manage people is hard. Don’t make the same mistake I
did and try to become someone else.

I’ve never been a khaki-and-tie sort of fella, and it felt (and looked!)
awkward when I acted that way. Finding LMX Theory affirmed what
I learned the hard way: You already have the interpersonal skills you
need to create trusted relationships.

Be yourself. Work to create trusted, deep professional relationships.
Connect with your team members as individuals, and humbly ask
that they connect with you. These are the actions that create great
relationships and build loyalty and trust with your team.

Keep working. You can do this.

1 Gerstner, C. R., & Day, D. V. (1997). Meta-analytic review of leader-member
exchange theory: Correlates and construct issues. Journal of Applied Psychology,
82, 827–844.

2 https://www.gallup.com/services/182138/state-american-manager.aspx

https://www.gallup.com/services/182138/state-american-manager.aspx

34

The Science of Happy
Developers: How to Improve
Your Dev Team’s Mojo

S oftware managers aspire to build high-performing teams, but
they often stumble by devaluing the impact their individual
relationships with developers have on team performance.

Well-meaning software managers often focus on their own
contributions to improving the software process, technical
architecture or political climate. While these efforts add value, they
don’t yield the individual and team performance increases needed
by the organization.

Wikipedia defines a high-performance team as “as a group of people

35

with specific roles and complementary talents and skills, aligned
with and committed to a common purpose, who consistently show
high levels of collaboration and innovation, that produce superior
results.” 3

Many managers feel that having highly skilled programmers is the
most important step toward creating high-performing teams. While
it is true that high-performing software teams are made up of highly
skilled programmers, simply grouping highly skilled programmers
together rarely makes them a high-performing team.

Technical managers are often promoted from technical roles, so
a belief that technical skills equate to team success often leads
them to continue to focus on their own technical skills. This is not
surprising as these are likely the skills that got them promoted into
leadership in the first place.

Instead, managers should see their role in creating successful teams
as an extension of the fruitful individual relationships they have
with their programmers.

When it comes to building high-performing teams, a technical
manager’s relationship with her developers is more important than
her own engineering prowess. I saw this first hand as a struggling
technical manager, and I continue to see this in my clients as a
technical leadership and process coach.

Leader-Member Exchange Theory (LMX Theory)

In the early 1980s, sociologists and organizational psychologists
began to look at leadership from a new perspective. Traditional
leadership theories have long been based on the “Great Man
Theory,” 4 which attributes a team’s performance to qualities

36

of the leader. Setting this theory aside in the twentieth century,
sociologists began to study how the quality of relationships
between managers and employees effected outcomes. This has
evolved into an area of research known as Leader-Member Exchange
Theory. This research has revealed that “the relationship with one’s
boss is a lens through which the entire work experience is viewed.” 5

They found a significant correlation between the quality of
relationship developers have with their manager, and the
developer’s job performance and job satisfaction. This focus on the
quality of relationship between leader and employee, rather than
only the traits of the leader, provides hope for all managers who
who want high-performing teams should cultivate high-quality
individual relationships with their team members.

Two Steps to Create Better Relationships

Hold weekly one-on-one meetings. In his book The 27 Problems
Managers Face, Bruce Tulgan states, “When things are going wrong,
the common denominator is unstructured, low-substance hit-or-
miss communication.” One-on-one meetings are the cornerstone
practice that creates and sustains strong relationships between
managers and developers. One-on-one meetings aren’t simply
status meetings, or delegation meetings, or even coffee meetings.
Instead, these meetings provide a private, consistent place where
leaders invest in their team, trust is built, feedback is given (and
received) and the relationships deepens.

In short, one-on-one meetings are an activity meant to build deep
professional trust, reveal training and feedback opportunities, and
allow the developer a safe place to give the manager the candid
feedback they need to improve.

37

Managers who see one-on-ones as an investment
understand that cancelling them sends the wrong

message and hurts the relationship.

Frequency and consistency are key attributes of these meetings.

They choose a frequency they can commit to, and they remain
consistent in keeping and conducting their scheduled one-on-one
meetings. While not every meeting is the same, they ensure that
time is given to discuss project impediments, give affirming and
corrective feedback, and ask for input and feedback on their own
management practice. Without this feedback, managers are “driving
blind,” without a way to understand what their team needs from
them.

Some managers object to spending time this way, pointing to their
“open door” policy as a better style of management. In her Harvard
Business Review article “Cancelling One-on-One Meetings Destroys
Your Productivity,” 6 Elizabeth Grace Sounders states “When you
cancel one-on-ones and compensate with an open door policy,
your time investment mimics that of a call center employee who
takes requests in the order they are received, instead of an effective
manager and executive who aligns his time investment with his
priorities.”

Adding to that, experienced managers understand that team
members are reluctant to use their open-door policy for fear of
“wasting the manager’s time.” Without a scheduled, consistent
one-on-one meeting, managers must depend on developers to use

38

their best judgement in deciding when and what to consult with
their manager about. This reluctance often leads to unnecessary
miscommunication, assumptions and frustration on both sides.

Hire selectively and prioritize for soft skills. LMX Theory found
that employees fall into one of two groups under their manager, the
in-group and the out-group. Members of the in-group enjoy more
advancement opportunities, greater trust, and more autonomy
and are happier and more productive than their out-group peers.
With this in mind, managers should seek to hire programmers who
understand and value strong manager relationships and who have
the soft skills necessary to participate in them. While hard technical
skills are important, the soft skills are an important indicator of
success in relationships with their manager.
Many managers perform “culture fit” interviews, hoping to find
programmers who will succeed at the company. This is a good start,
but adding questions that explore past managerial relationships
and ability (and willingness) to give candid feedback and
understanding of the importance of good relationships shows that
you care about relationships and helps you find employees who will
also care.

Next time, we’ll talk about better ways to onboard those new hires.

3 https://en.wikipedia.org/wiki/High-performance_teams
4 https://en.wikipedia.org/wiki/Great_man_theory
5 Gerstner & Day
6 https://hbr.org/2015/03/cancelling-one-on-one-meetings-destroys-your-
 productivity

https://en.wikipedia.org/wiki/High-performance_teams
https://www.gallup.com/services/182138/state-american-manager.aspx
https://en.wikipedia.org/wiki/Great_man_theory
https://www.gallup.com/services/182138/state-american-manager.aspx
https://www.gallup.com/services/182138/state-american-manager.aspx
https://hbr.org/2015/03/cancelling-one-on-one-meetings-destroys-your- productivity
https://hbr.org/2015/03/cancelling-one-on-one-meetings-destroys-your- productivity

39

A t my first programming job, it took three weeks to get
my dev environment fully set up. I was only the second
developer to work at the company, ever, so nothing was

documented. The first person quit, which is why I had the job. At my
second, it only took four days, because I was the eighth person in
the programming department, so I had seven other people to help
me. Today, my clients tell me things like, “we use Docker, so it takes
less than an hour to onboard a new developer.”

I’m glad new devs don’t have to face the same frustrations I did.
But setting up a productive dev environment isn’t onboarding.
Onboarding is setting up a person to work productively on your
team.

Onboard People, Not
Technology

40

A Leadership Smell

Some managers might fall into the trap of believing that once
they’re done setting up the dev environment, they’ve done their
part to make the new developer successful and that the rest is up to
the new employee. That all they need is a computer, a chair, a dev
environment, and a project to work on.

This is a dangerous leadership smell. Danger for the manager, yes,
but mostly for the new developer.

The danger is the unspoken idea that after we apply onboarding to a
new developer, they have everything they need to be productive. Of
course, when you read it, it seems sort of ridiculous. But I get a whiff
of this from managers at many organizations I work with. It typically
comes out in a conversation like this:

Me: How is your new programmer working out?
Manager: He’s doing… okay. Not quite what I hoped, but he’ll be
fine.
Me: What makes you say that?
Manager: Well, we got everything set up quickly, and we got him all
his access and onboarding. But he’s just a lot slower than I expected.
Me: Why did you expect he’d be faster?
Manager: First, he was supposed to be an expert in Java
development. Second, we’ve automated our dev environment setup
at great cost and effort. So, there shouldn’t be anything standing in
his way.

As you might guess, this situation is more dangerous for the
programmer than the manager, because it’s the manager’s
expectations that aren’t being met. It’s the manager who’s

41

disappointed in the speed at which things are progressing. And it’s
the manager who feels that their onboarding process, whatever it is,
should yield a developer that’s “up to speed and ready to run.”

These are the things your developer needs to be onboarded to, and
it takes much longer than just a few hours.

Onboarding Is Leading

Onboarding is a key activity of technical mangers and leaders. It’s
not the responsibility of HR, and it’s certainly not simply setting up
the dev environment.

In my experience, onboarding should include or result in the
following:

• Positive relationships with the developer’s team
• Introductions to the project stakeholders
• Clarity about the team’s current goals
• Knowledge of key upcoming projects
• Clarity about the team’s values
• Knowing who to go to for help and how often it’s okay to ask for help
• First-hand experience with the team’s development process

If the manager believes they’ve done their part, the
problem must be with the developer’s motivation,
drive or skill. This ignores the most important keys
to productivity: good relationships and a healthy

environment

42

and ceremonies (agile, scrum, stand-ups, retros, etc.)
• First-hand experience with the key communication channels

(team meetings, 1:1s, etc.)
• Receiving a piece of adjusting and affirming feedback from their

manager
• Giving a piece of adjusting and affirming feedback to their

manager and teammates
• A clear sense of the tech and infrastructure used by the team
• A working dev environment

How long should this take?

It should take you, the manager, at least a few weeks to initially
onboard a new developer. After that, expect it to take a few quarters
(three to nine months) for a new developer to “come up to speed.”
Of course, this will vary wildly according to the kind of projects you
are working on. I’ve led teams where I spent a year onboarding a
dev to work on a large ERP system. You might have experienced
even longer.

Onboarding is important leadership work that you need to be
actively involved with. Like other work, you don’t have to do it all
yourself, but you need to make sure it all gets done – and done
well. Onboarding sets the stage for many years of productive work.
Don’t shortchange your team by pretending it’s just about tools,
paperwork or diversity videos. It’s about intentionally getting the
right relationships in place from day one, which are the key to
productive development teams.

43

Ask “Why?” with
humility and genuine
interest, seeking to
understand.

A fictional account of real things I have said and heard.

“Wouldn’t it be awesome to re-write this from scratch?”
“Yes, that would be awesome,” the team agreed.
“Then we could use a modern framework and that new language.”
“Then the code would be so clean.”
“We would have complete test coverage.”
“We would use a modern UI.”
“It would be so easy to debug.”
“Then we would remove all the crufty parts.”
“Then we would understand it completely.”
“Then we could put new ideas into practice.”
“We could really be agile about it.”
“We’d have control over how we did it.”

Why Your Programmers
Fantasize About a Big Rewrite

44

“We’d have a voice in how we work.”
“We’d be taken seriously!”
“Our ideas would be respected!”
“Instead of being treated like code monkeys!”
“Then we could do great work.”
“Then we would really show the boss what good software looks like.”
“If only we had the chance to do a rewrite.”
“Then everything would be great.”
“If only.”

Of course, this may not be the only reason your programmers want a
re-write, but there are important elements of truth in here that you’d
be advised not to ignore. The next time your programmers talk about
a re-write, lean in and listen closely. It might not actually be about
legacy code, old languages or complexity.

Instead, they may feel…

• Unable to get buy-in about their smaller ideas
• Prevented from doing great work by the culture or environment
• Trapped in a codebase they don’t fully understand
• Lacking ownership of part of the system

Or, something else entirely.

A good way to learn more about this? Ask “Why?” with humility and
genuine interest, seeking to understand what’s behind their rewrite
idea.

Other relevant questions might include “What’s behind that?” “How
would that impact the team?” “How would you feel about working
on that project?”

45

Create an environment where everyone fully contributes to
problem-solving and everyone is fully engaged, and your team may
have fewer rewrite fantasies.

46

Why Your Programmer
Just Wants to Code

W hen I interviewed Jamie for a position at ZenTech, he
seemed like an enthusiastic engineer. With solid tech
skills, ideas for process and product improvement and a

great team attitude, he was the obvious choice.

But, two years later, Jamie was “that guy.” You know, the one who
wants to code without being bothered.

I should have noticed the signs. He didn’t speak up in retrospectives,
he didn’t contribute process or product ideas like I expected, and
his “team-friendly” interactions were usually sarcastic. He often
talked about technical debt, our lack of innovation and the “stupid”
decisions holding us back. An irritating “I told you so” sentiment
plagued his comments and feedback.

47

Jamie may have thought about leaving the company. If he did, I
couldn’t tell. Although, I certainly wished he would have. But we
were shorthanded, and I needed all the help I could get.

The result?

Another cliché programmer who just wanted to code and be left
alone.

People Are Shaped by Environment

Too many managers believe the problem in this scenario lies with
Jamie. If he was a better employee, dedicated worker, or at least
cared more, then this wouldn’t have happened. Right?

Unfortunately, no.

No matter what the reason,
dismissing or devaluing
your programmer’s ideas
– especially in the first few
months – is a bad move.

48

The transition from enthusiastic programmer to polarized
programmer doesn’t happen overnight. But it starts sooner than
you think.

The First Suggestions Matter - A Lot

How you handle ideas from new programmers sends an important
signal. Good or bad, it sets the stage for what they expect. This
determines whether they share more ideas in the future… or keep
their mouths shut.

Sure, some ideas might not be feasible in your environment. Some
might get put on the back burner to be discussed “when we’re not
so busy.” Some ideas seem great, but they run against unspoken
cultural norms.

No matter what the reason, dismissing or devaluing your
programmer’s ideas – especially in the first few months – is a bad
move.

Damaged by all the naysaying, he’ll try a few more times to present
his ideas differently, aiming for a successful outcome. If he continues
to feel punished, though, he’ll realize that the only way to win is to
not play.

Which is exactly what you don’t want your programmers learning.
He will stop presenting ideas, asking to meet customers, and
genuinely trying to understand the business.

Ultimately, it’s a lose-lose.

The Bigger the Idea, the Bigger the Risk

Remember that your programmer is taking a risk when they offer a
new idea. The bigger the idea, the bigger the risk.

49

Why is it a risk? Because our ideas reflect ourselves, our views and
our passions. We don’t advance ideas we don’t care about or that
we don’t think will work. We put forth our best ideas with the hope
they will be received.

This requires vulnerability, which only happens if we’re fairly certain
we won’t be humiliated. If we believe our ideas won’t be accepted,
we stop offering them.

Feedback About Ideas Shapes Behavior

It’s only natural, then, that your programmer is reduced to doing
only what brings him success: coding.

His enthusiasm for creation, innovation and development, sadly, are
lost. Perhaps it transforms into unrealistic ideas about code quality
or code metrics. His concern for market share and business health
is replaced with a concern for titles and pay scales. He becomes
more worried about how much he earns, what his title is and how
he looks on LinkedIn. His enthusiasm for changing the world is
replaced with nit-picking the development process.

Worst of all, though, his concern that “We aren’t building the right
thing” will be replaced with “We aren’t building the thing right.” He’s
learned to not give input on what is built, so he becomes obsessed
with how it’s built.

Your culture, for him, has become survival of the fittest.

What’s Your Onboarding Teaching?

While you would never say this directly, your onboarding and
culture may be teaching some pretty negative lessons:

“Our company doesn’t like big ideas from little people.”

50

“You just focus on building stuff. We’ll figure out what the customer
needs.”
“You are just a code monkey.”
“Why are you asking so many questions? Don’t you have coding to
do?”

What Is Your Real Culture?

Culture isn’t the slogan on your wall, or how you describe your
mission during an interview. Culture is the way people actually act
and what they actually care about.

Texas A&M Professor Ifte Choudhury states, “A culture is a way of life
of a group of people – the behaviors, beliefs, values, and symbols
that they accept, generally without thinking about them, and
that are passed along by communication and imitation from one
generation to the next.” 7

If you wonder what kind of culture you have, start watching how
people behave. If you don’t like what you see, change it. Culture
isn’t dictated. It’s learned, modeled and imitated. As a leader, it’s
your job to be worthy of imitation. Because the culture isn’t Jamie’s
fault. It’s ours – Team Leads, Software Managers and CTOs.

So, stop blaming Jamie and start making the changes that your
culture demands. The sooner, the better.

7 http://people.tamu.edu/~i-choudhury/culture.html

http://people.tamu.edu/~i-choudhury/culture.html

51

The most popular article I’ve written is called “Why Your
Programmer Just Wants to Code.” The article tells the story
of Jamie, a programmer who joins a new company full of

enthusiasm and ideas. Fast-forward a couple years, and Jamie is
one of those programmers “who just wants to code.” A programmer
who doesn’t contribute new ideas, doesn’t offer new ways of doing
things, and just wants to be left alone to write code.

Sadly, I received almost no response from managers or leaders
about this story.

It appears some of you missed the point, so let me be blunt.
Tech managers, these situations are your fault.

A Wake-Up Call for Tech
Managers

52

You must accept responsibility for unmotivated programmers
who “only want to code” or who appear to be concerned only with
flashy, new tech. As the leader, you are responsible for creating
an environment where everyone can contribute to solving the
problems at hand.

Instead, it appears many programmers are treated like idiot savants:
brilliant children capable only of coding.

Stop it. Seriously.

The massive response to this article should scare the hell out of you.

I get the sense that they are mad as hell, and they aren’t going to
take it anymore.

Don’t believe me? Read on…

I wrote the article in hopes that leaders would recognize that
programmers want to bring their whole brain to work but that too
often the environment prevents them from doing so.

Instead, I received thousands of responses (claps, comments,
messages) from programmers who wish their managers would pay
attention. Who wish their culture welcomed, discussed and debated
ideas.

The market is hot, giving your developers the power
to resign and replace YOU with a better leader.

53

Here are some of the comments that stood out to me…
“OMG, preach! This “idea/feedback negging” phenomenon is
the deadliest innovation killer of all the land, and it hurts every
department (not just a coder problem).”

“I came in to the workforce guns blazing, ready to make a difference.
Now, I struggle to suppress my true thoughts every day and just deal
with how things are… I REALLY hope leaders start figuring this out
soon.”

“I went through something similar, I even stopped working on my
pet projects because coding at work was sucky and demanding,
glad I just left them after 5 months!”

“It’s sad that actually the coding culture in my current environment
is that programmers are merely interested in finishing a task instead
of thinking of sharing ideas.”

Another reader takes a slightly different view.

“What we need is not ‘acceptance’ of ideas. We need to see our ideas
discussed and debated, and then see that the decision is based on
the merit of the idea, not our position. If I present an idea and it gets
discussed and then dismissed, that’s ok. If I present an idea and
just get told that I should not do that and just focus on my current
assignment, well then that is a clear signal that I’m not allowed
to do anything but comply with orders like a grunt. When that
happens, I’ll basically be looking for the next job.”

That last one sums it up. Create an environment where your
programmers can fully contribute, or the best ones will leave.
Let’s get real. If you see this problem on your team, it’s not going to

54

fix itself overnight. BUT, you can take huge steps toward reversing
this problem.

Let’s change things.

Start Listening and Stop Telling

If you’ve got developers who just want to be left alone, today is a
great day to turn things around. Start in your next 1:1 with them.
(Don’t have 1:1s? Start. Today.)

Step 1: Be humble.

Have a reset conversation with each team member, where you
honestly ask if you’ve been deaf to their ideas, treating them like
“resources,” and frustrating them. Regardless of what they say, tell
them you don’t want to be that sort of boss, and that you’re sorry.
(Yes, it is good to apologize to people you may have hurt. Yes, even
if you’re the boss.) Next, tell them you need their help. You rely on
their feedback to improve. Give them permission to stop you the
next time you do it. Give them permission to give you feedback in
private about your behavior. Finally, thank them for being there and
for all their hard work. Thank them for listening and for helping you
grow into the kind of manager they need.

Step 2: Listen more, tell less.

In all your interactions with the team, talk half as much. Then, half
as much again. This will probably catch them off guard, especially
if you’ve been “leading from the front” and telling them what to
do. Instead, listen to how they talk to each other. How do they talk
about customers, bosses or other teams? Who controls the flow?

55

Who’s still trying to put ideas out there? Who seems completely shut
down? See if you can get everyone to participate through open-
ended questions. Consider using a “talking stick” if some people
suck all the air out of the room. Gently set expectations that you
want to hear everyone’s contribution to solving problems.

Step 3: Ask more often than tell.

Most engineering managers take the default approach of telling
engineers how something should be done. This is probably because
they used to be engineers, and they “see the answer clearly.” Yet,
telling doesn’t build the team up – it shuts them down. So, start
asking more questions. Lots of WHY? questions. Of course, you have
to tap into your curiosity and lean in to hear the answer. Truth be
told, you depend on them to get the work done, and you depend
on them to make a million small decisions. You should be very
interested in what they think and in bringing their ideas to light.
The book Humble Inquiry by Ed Schein is a wonderful resource for
learning to ask better questions.

Tech leaders, you’ve got work to do. You’d better start pulling all-
nighters to fix things, before it’s too late.

56

Let’s Stop Learned
Helplessness in Software
Engineering

Over the past 24 hours, two of my articles, “Why Your
Programmer Just Wants to Code” and “A Wake-Up Call for
Tech Managers,” received over 96,000 reads on Medium and

over 900 Reddit comments.

It appears we have a bigger problem than I thought.

Yes, we have some bad managers at tech companies. And yes, I was
hard on them, placing the blame for programmer apathy directly in
their laps.

But I want to help programmers who feel frustrated, disenfranchised
or shut-down. It was you – programmers – who posted the vast

Let’s Stop Learned
Helplessness in Software
Engineering

57

majority of comments, describing terrible conditions and awful
management. You raised your hand to say, “I’m tired of this.”

Starting today, let’s change this. We, as programmers, have
accepted this behavior. We teach managers how to treat us by what
we tolerate. Let’s get real. We can’t change everything alone, but we
have more power than we think. Here are some actionable ways you
can radically change your work environment.

Recognize That Your Manager Wants to Do a Good Job

Chances are good your boss used to be an engineer, just like you.
Tech companies embrace the Peter Principle, and they promote
people to the level where they begin to fail.

We teach managers how
to treat us by what we
tolerate.

58

It doesn’t help that your manager probably received less training
than your barista. (In fact, a survey I conducted with a fellow
management consultant showed that 76% of tech managers receive
less than 8 hours of training for their role!)

No one is born knowing how to manage or lead. The phrase
“natural-born leader” is crap.

Many tech managers wonder if they are “cut out” for their job.
Honestly, most of them wish they were still programming!

The transition from programmer to manager is hard, so let’s
start by giving managers a break. Yes, they need to change. But
who doesn’t? No one is perfect. So, let’s find ways to change the
environment so we can improve, together.

Your Manager Works in a Bad Environment (and So Do You)!

Both you and your boss are part of an environment with problems.
Chances are, your boss didn’t create the environment. In fact, they
likely feel as victimized by bad environments as you do.

Tech leaders almost never control…

• What features / bugs programmers work on
• How much programmers get paid
• How much vacation programmers receive
• What benefits they can offer programmers
• Where programmers sit and what type of computer they use
• If and when programmers can work remotely
• What languages and frameworks are used

Usually, the company culture and environment dictate those things,

59

and it frustrates the hell out of your boss.

Recognize that no PERSON is stopping you, but the ENVIRONMENT
might be. Bad environments have smells, just like bad code has
smells. Here are some environmental smells you might notice:

• Quiet (or not so quiet) talk about what they would improve if
they were in control

• Lack of curiosity about project value and outcomes
• A feeling of powerlessness to make improvements
• A feeling that “everyone else can screw-up, but we are held

accountable”
• Continuing to do things “like we always have” for fear of

making a mistake (and being punished)
• Lots of talk about change; very little actual change

And many more…

I’ve worked in oppressive environments, and it’s stifling. It feels like
you can’t breathe. It leaves you frustrated and angry. So, what can
you do about the bad environment?

Leadership Isn’t Granted, It’s Grasped

Think about the folks you work side by side with for a moment. Are
there any that you’d describe as an informal leader? (Companies
appoint Managers, but leaders seem to pop up everywhere.) Watch
these people closely. What do they do differently? Why do you
suppose they are doing it? How do others respond to them?
At my first job, I noticed that a co-worker, Milind, acted a bit
differently than others. He was an informal leader on the team,
even though I didn’t realize it at first. For example, Milind asked
key questions about WHY particular approaches were taken. He

60

admitted his ignorance in a group setting and asked the boss to
explain ideas more clearly. He never hesitated to call the customer
to clarify or even to negotiate a requirement. He stayed hyper-
focused on delivering real software rather than just discussing his
tools. Finally, he insisted that we understand the root causes of
problems.

Milind changed our environment by his actions, and he certainly
changed my view of “Software Engineering.” He even changed how
our boss acted! He showed me that I had much more power than I
thought… if I would only stop expecting to be spoon-fed everything.
His actions showed me that true leadership isn’t granted, it’s
grasped. With time, I changed my behavior, and others did as well.
So can you.

Talk About the Environment, Not Just the Process

Most teams discuss their agile process. What worked, what didn’t,
how can things improve. That’s what an agile retrospective is for.
The best teams regularly talk about it and even make changes to
improve things. Great teams also talk about their environment.

They spend time discussing environmental issues, like:

• How people are working together
• How much they trust each other
• How emotionally safe the environment is
• How communication can be improved
• How people can help each other more and receive help more

easily
• How they can become better problem-solvers
• How ego and self-image impact the way they work

61

Bad environments have
smells, just like bad code has
smells.

62

Begin to make your environment a topic of discussion, and you may
well see things change. You don’t have to get approval from anyone
for this. Don’t expect your boss to hold a meeting entitled “How to
Improve the Software Development Environment.” Don’t propose it
for the next team meeting.

Just start talking about it. Start questioning assumptions and
bringing up environmental topics in your retrospectives. The more
you talk about it, the more others will too.

Schedule a One-on-One with Your Boss

If you don’t have a regular one-on-one with your boss, ask for
one. You don’t have to wait for them to initiate it. Most people feel
awkward doing this, but every time I’ve done it, my manager was
thrilled I asked.

See, most managers see the value in one-on-ones, but they suspect
you don’t. Asking for one changes the dynamic completely.
Send a brief agenda in advance and come prepared. (Unsure what
to talk about? Grab a copy of the One-on-One Framework for some
ideas.)

A sample agenda might be:

1. Discuss upcoming projects
2. Receive feedback from manager
3. Report on current projects
4. Offer feedback to manager
In your one-on-one, consider telling your boss that you’re working
to change yourself and to change the environment. Tell them that
you want to be a more effective engineer and to create a more

63

effective team environment. Tell that that you know tech skills are
only a part of what makes a good engineer and that you want to
improve your leadership skills.

They won’t feel threatened. You aren’t trying to take their job. You’re
trying to do your job better.

Every manager wants self-led programmers and self-managed
teams. That’s the promise of agile, right? Your efforts will make their
life easier.

Give this a try, and let me know how it goes.

64

Empowering your
team takes more
work, not less work.

My cousin is a remote worker at a company that embraces
“employee empowerment.”

The CEO doesn’t try to make the decisions, he leaves that to the
team.

He trusts the team to do the right thing.

Sounds good on paper, right? But the reality is miserable.
For example, my cousin spent two hours last night trying to “get on
the same page” with four co-workers over slack about what date to
publish a blog post he’d written. Not about the content of the blog
post, or even the headline or call-to-action, but about which date it
should be published on their site.

The Surprising Misery of
Empowered Teams

65

Why?

In his words: “The CEO tells us we’re empowered, but that feels like
an excuse to never show up or be available to us. He tells us that he
trusts us to ‘do the right thing,’ but no one has any idea what’s right.
Worse, because no one knows what’s right, everyone just argues
for their opinion. We’re told to ‘get everyone on the same page,’ so
the arguing continues as people tire and drop out. The last man
standing wins.”

That isn’t empowerment, it’s chaos.

Needless to say, he’s looking for a new job.

Empowering your team takes more work, not less work. Do the work
to empower your team. Not sure where to start? Ask them; they
know what they need.

66

Carmen’s heart sunk as she looked at her calendar. Back-to-
back 1:1 meetings filled her day, overflowing into the next.

“Ugh… maybe I could call in sick. Or make up an excuse to work
from home. My boss wouldn’t care. My team would be thrilled to
skip them.”

“It’s not too late, you can still call in sick,” she thought as she stood
in the Starbucks line, “but then what kind of boss would you be? It
sucks, and everyone hates it, but you have to do it.”

“Sheesh, what are we gonna talk about? I guess I’ll just ask people
what they’re working on this week, and hopefully I can get each one
done in 5 minutes. Oh! Or maybe we could do them in small groups!

Advanced PeopleOps - 1:1
Retrospectives

67

That would take SO much less time.”
“I’d better order an extra-large coffee with quad shots… I’m going to
need it.”

Apply What You Already Know

I’m going to share a head-smackingly simple lesson that has served
me well. Ready?

Make every fourth one-on-one meeting a retrospective to discuss
improvements to your one-on-ones.

This is similar to a sprint retrospective, and you can use the same
format. The point of a sprint retrospective is for the team to
improve. The point of this retro is to improve your one-on-ones,
making them more valuable for both of you.

That’s it. Go do it.

But if you need a nudge…

Here are five steps to help you start:

• Let each team member know that the next one-on-one meeting
will be used to discuss your one-on-one meetings.

• Ask them to write down what’s working for them, what’s not
working and ideas for change. You will do the same.

• During the meeting, discuss what you both wrote, just like in a
normal retro.

• Brainstorm a list together of possible actions that will improve
the meetings.

• Choose a few actions, again together, to try for the next three
meetings, and then discuss them in your next one-on-one retro.

68

Simply start talking about your 1:1s with the other person and
discuss how they could be better.

What If You’re Not the Boss?

What can you do to improve a one-on-one that is inflicted on you?
Here are some simple, but maybe not easy, ways to broach the
subject with your boss:

• Forward this article to your boss, with a note that you’d like to
try 1:1 retros.

• In your next 1:1 meeting, ask if you can take a few minutes to
discuss how the meeting can be improved.

• Brainstorm a retro-style “glad-sad-mad” list about the meeting
and bring it to the next meeting.

• Ask your boss what the real goal of the meeting is and whether
they feel this format is working.

• Let your boss know that the current meeting format frustrates
you and that you’d like to discuss changing it.

• Tell your boss the way you feel about your 1:1 meetings, and
then ask how they feel about them.

Talk about what’s really happening. Stop pretending your 1:1s are
great, or that they can’t be changed, or that you’re benefiting from
them as much as you could be.

Best case: The meetings will improve, your boss will appreciate your
initiative, and you’ll do better work.

Worst case: Your boss says “No, things are fine as-is. How dare you
suggest they could be improved? Just give me your status update.”
(If the worst case happens, you have bigger problems than crummy
1:1 meetings.)

69

What Kinds of Things Can Be Changed About a 1:1 Meeting?

It’s easy to fall into a rut with your 1:1 meetings, like an old married
couple can fall into a pattern about how they spend Friday nights.
Here are ten things about your 1:1s that you could change but might
not have considered. (There are surely many more, but this should
get your creative juices flowing.)

• How often you meet (it doesn’t have to be the same frequency
with each person)

• What time you meet (it doesn’t have to always be at the same
time)

• Who runs the meeting (how could you take turns running the
meeting?)

• Where you meet (consider a walking meeting or a breakfast
meeting)

• What preparation both of you do for the meeting (try more, or
less, prep)

• The agenda for the meeting
• The goal of the meeting
• The length of the meeting
• The communication medium (face-to-face, telephone, slack,

Skype, etc.)
• What you could combine it with (a meal, a walk, a commute,

etc.)

New possibilities bring hope that the future doesn’t
have to be like the past.

70

Do You Wait Too Long to Consider a Change?

When I start to feel in a rut, I ask myself some questions. In
particular, I ask myself if my current practices still fit with my current
situation or reality. Often, I find that this one question allows me
to be more agile, more creative and less judging. It lets me see new
possibilities that I’d been missing.

For example, if I was dreading my 1:1s, I might ask questions such
as...

• What is my secret goal for these meetings?
• What is my spoken goal for them?
• What is the other person’s goal for them?
• What is the company’s goal for them?
• What would happen if we stopped doing them?
• What parts are valuable to me and which feel like a waste?
• What parts are valuable to them and which feel like a waste?

71

• What is the least we could do and still have a valuable 1:1
meeting?

• What do we need to add? Subtract? Change?

Grandma’s Ham

Albert Einstein summed it up pretty well when he said, “The
important thing is not to stop questioning.”

Jane asked her mother, “Why do you cut the ends off the ham
before baking it?”

Her mother answered, “Because that’s how your grandma taught
me to do it. Ask Grandma.”

When Jane asked her Grandma, she replied, “My roasting pan was
small, so I had to cut the ends off the ham to fit it in the pan.”
It’s hard to question the status quo.

Not just because you want to avoid looking dumb, or rocking the
boat, or breaking tradition, but because you may not realize there’s
a question to ask.

New possibilities are wonderful. New choices and options do exist
about how we work together. New possibilities bring hope that the
future doesn’t have to be like the past and that we can grow and
improve.

What a great thought!

Now, you might be thinking of someone who might be feeling stuck
that needs to hear this. Go ahead and forward this article it to them.

72

Let’s Stop Learned
Helplessness in Software
Engineering

F red Brooks is a rebel. In his 1975 book The Mythical Man-
Month, Brooks observed the impact of adding people to late
software projects. The simplified version of his observation

became known as Brooks’ Law: “Adding human resources to a late
software project makes it later.”

I’ve heard this law quoted often but only in jest by programmers
who failed to meet a project deadline. As they look back over the
project, searching for root causes of the failure, this law is often
trotted out as a sort of joking excuse. Yet, after 25 years working
in and with software teams, I have yet to hear a manager of a late
project say, “Hmm… The very worst thing I could do is add more
people. Brooks’ Law cautions me that adding people will actually

The Myth of Many Hands

73

Brooks’ Law: “Adding human
resources to a late software
project makes it later.”

make the project later!”

I’ve also never heard a manager of a late project look back on it and
comment, “My big mistake was adding more people to the project.
That just made things worse.”

Unfortunately, it appears that Brooks’ Law has become an
internet platitude, a moral saying that contains truth but is largely
disregarded.

Why Brooks’ Law Is (Mostly) Ignored

“Many hands make light work” – John Haywood (1497–1580)
It’s counterintuitive. When we’re young, we learn to work in various
situations. Usually that work is done with our hands, arms and feet,

74

and it’s usually completed faster when more people work together.
For example, raking a large yard of leaves is faster with four people
than with two and weeding a flowerbed is faster with two people
than with one. This assumes, of course, that there are enough rakes
and trowels for everyone to have their own.

Early on, we learn a formula for work that looks like this: “If X people
take Y days to finish Z tasks, then (2X) people will take (Y/2) days to
finish Z tasks.” It’s even a common math story problem in school!
Now, writing software doesn’t seem much like raking or weeding,
but that old formula is hard to shake. After all, it’s so darn logical! In
actuality, many of us secretly embrace a different law than Brooks’
Law, which we could call Skoorb’s Law: Adding human resources to
a late software project helps it finish on time.

The name might sound silly, but since it’s how we act, it might as
well have one.

We’re under pressure. A senior director of project management at a
Fortune 1000 company interviewed for this story reports, “Executive
management’s first question about late projects is almost always:
‘Can we add more people to the project?’ Our answer is usually,
‘No, the nature of the project is such that adding people won’t
get it done faster.’ While this might not be a popular answer, we
understand why they ask the question. Adding people may be the
most intuitive move to take, yet it’s often a bad idea.”

When projects are late, there’s immense pressure to take steps
to get the project back on track. When this pressure comes
from non-technical executives, it can be difficult to resist – and
futile to explain that software “doesn’t work that way.” In many
organizations, doing something is better than doing nothing, as it
shows we’re working hard to fix the problem. Additionally, it feels

75

safe to add people to a late project, because it’s hard to imagine it
will make things worse. Yet that’s exactly what Brooks’ Law predicts.
Recall that Brooks’ Law does not state…

• Adding human resources to a late software project has no
effect.

• Adding human resources to a late software project has a
marginal effect.

• Adding human resources to a late software project has an
unknown effect.

Instead, it states that adding human resources to a late software
project has a negative effect. This one management activity, meant
to help, will cause the project to deliver even later than expected.
The law is at once profound, provocative and a bit upsetting.
Someone got lucky (or thinks they did!) Companies have their own
mythology. Stories about project successes often find their way into
the cannon of myths and become local legends. Like many such
laws, Brooks’ Law isn’t absolute. Managers regularly add people to
late projects, and some of those projects finish on time. As they say,
luck happens.

Unfortunately, confirmation bias might be working against us.
Confirmation bias is the tendency to interpret information in ways
that confirm our own beliefs. This can easily impact how we view
the outcome of a project. For example, if Mary decides to add a
programmer to her late project, and the project finishes on time,
she may see this as a confirmation that Brooks’ Law is a fallacy.
The truth is that, before GitPrime, it was very difficult (impossible?)
to measure the impact of a team member added late in the project,
either good, bad or indifferent. Yet confirmation bias, past luck,
and local legends can quickly create a belief that Brooks’ Law is an
antiquated axiom from the past.

76

77

Loopholes

Fortunately, there are some loopholes in Brooks’ law, and once
you know them, you can use them. First, if you see a project is
off track, add resources quickly. Adding people at the 25% or
50% mark allows them to come up to speed and spend time
contributing to the project. Fred Brooks cited the time it takes for
a new programmer to come up to speed, or ramp-up time, as an
oft-overlooked factor. While adding more people early in a project
may appear wasteful (you may not be certain yet that you need
them), there is always the option to remove them later if they aren’t
needed.

This brings us to the second loophole: padding. Pad the number of
people you think you need by one or two, just in case. And of course,
pad the project schedule. Estimates, after all, are just guesses. As
Jerry Weinberg 8 told me once, “Consider your best-case estimate
for when the project will be done if everything goes perfectly. Have
you ever seen anything go perfectly? No, this logic tells us that your
delivery date must be later than that.”

Add only “the best” people. I don’t mean the rock star programmer,
or the smartest person on your team. “Best,” in this case, refers to
four very project-specific attributes:

1. Has worked with the team on significant projects in the past
2. Has good relationships with team members
3. Knows the code base
4. Knows the problem domain

These four factors will have a huge impact on the outcome of adding
someone to a project, especially a project that’s already underway
(read: late).

78

Late projects are often full of chaos, miscommunications, stress,
responsibility hand-offs and a frantic pace. This is the worst possible
environment for creating new trust relationships and getting a new
member to gel with a team. In fact, one of the reasons Brooks’ Law
is true is that the team will spend a great deal of time trying to bring
the new person up to speed and figuring out whether they can trust
them. This puts everyone farther behind.

Adding someone the team knows and trusts, maybe someone they
have worked with before, is your best bet. In fact, early in the project
is an excellent time to ask the team, “If we could add someone to
the team, who would you like that to be? What could they do to
contribute to the project?” The team is in the best position to know,
and they’ll be most accepting of a new person if they have input on
the decision.

Roles and Work Partitions

Pulling weeds or raking leaves are examples of work that can be
partitioned between people. Of course, any parent with two kids
and one rake knows a shortage of tools can be a recipe for trouble.
Only one kid can take the rake at a time, which causes strife
between team members (and everyone else!). If you do choose
to add a new member, discuss with the team which pieces can be
partitioned and determine whether you need to obtain more rakes
so everyone can be productive. You might feel you know exactly
how to divide the work, but your team will probably have better
ideas.

79

Watch Out for Your Team’s Feelings

Don’t forget that the addition of a new project member also sends
signals to the team about how others perceive them and their
work on the project. You may be sending the message that they’re
somehow not good enough. This makes it doubly important for
the new person to be “pulled in” by the team rather than “pushed
in” by management. Pushing in a new team member without the
team’s buy-in may send the signal that the team is not trusted by
management, is not capable of finishing or is coming up short in
some other area. This can create resentment or hostility, resulting in
a dramatic loss of focus and productivity.

Brook’s Law reveals fundamental truths about building software:

 However, Brooks’ Law is not a constant – like the speed of light –
but a guide – like highway speed limits. Following it will keep you
out of trouble most of the time, but in special circumstances, it’s
appropriate to break it.

Technical teams are highly dependent on each
other, the work is often tightly coupled and difficult
to partition, and positive trust relationships among

team members are a key factor to success.

8 http://www.geraldmweinberg.com/Site/Home.html

http://www.geraldmweinberg.com/Site/Home.html

80

Professionals
aren’t content with
generalities or vague
requirements. They
stop and ask for
specifics, even at the
risk of looking dumb.

“JUST”

It’s one of the worst four-letter words I know. Whenever I catch
myself using it, I stop and apologize. And when I hear it, I hold up my
hand and stop the person speaking.

Let me give you some examples from last week…

“Just put a form up to collect their e-mail…”
“Just make it so they can login with Facebook…”
“I’ll just throw it in a new database field.”
“We can just launch a new database server…”
“Let’s just let them post notes, like Twitter does…”
A synonym I often hear is “simply.”

The 4-Letter Word That Makes
My Blood Boil

81

“Let’s simply use Redis for this…”
“We’ll simply spin up another AWS server…”
“It should be simple to reuse the Atlas library for that.”

If you use the words “just” or “simply,” you might have forgotten
how hard the technical details can be. I cover how to fix this in
Chapter 2 of my book, 7 Habits That Ruin Your Technical Team.

Or, you might be pushing the team too hard and glossing over the
details. That’s covered in Chapter 5 of the book.

What if you’re not saying it, but you’re hearing it?

Then it’s time to stop the conversation and politely ask for the
missing details. This used to be hard for me because it made me
feel like I was asking “stupid” questions. For many years, I felt that
if I asked people to explain what they meant, I’d look dumb. Or
unprofessional. Or I’d be wasting their time.

I finally realized that professionals aren’t content with generalities
or vague requirements. They stop and ask for specifics, even at the
risk of looking dumb. They have the confidence to know they aren’t
dumb and to not pretend to understand something they don’t.
You can use phrases like…

“Let’s pause so I can clarify what you mean. Are you suggesting that
we…”
“Wait, before we continue, can you explain that feature more?”
“Going back to what you said, can you explain how you would
implement that?”
“I might be a bit slow here, but can you explain?”

82

Lullaby Language

Jerry Weinberg calls “just” an example of Lullaby Language,
which “lulls your mind into a false sense of security, yet remains
ambiguous enough to allow for the opposite interpretation.” 9
He groups it with words like “should,” “soon,” “very” and “trivial.” All
perfectly nice words that we see every day, but words that can carry
a lot of hidden ambiguity and assumptions.

How I Learned to Stop the Conversation

My boss, Milind, was great at this. When I was promoted to Team
Lead, I was brought into a whole new world of meetings and
discussions, and I would keep my mouth shut when someone used
the word “Just” or spoke in vague terms. I didn’t want someone to
think I wasn’t fit for the job or that I was having trouble keeping up.
Instead, I nodded and smiled and tried to look like I was tracking
with them.

But Milind knew it was dangerous to accept generalities or
misunderstandings. He would stop a large group conversation with
the phrase, “Maybe I’m missing something here, but can you explain
that in more detail?” Everyone would look at him, the speaker
would pause and then back up to cover the “just” part in more
detail.

And lo and behold, 90% of the time it was revealed that the
person who glossed over the details had oversimplified something
important. Or was wrong about an assumption. That means 90% of
the time we were able to correct the discussion in the moment and
move forward with better information.

83

9 https://www.humansystemsinaction.com/lullaby-language/

And the 10% of the time there wasn’t a problem? The explanation
clarified everyone’s understanding and we quickly moved forward.
Or it opened the door to other unspoken questions from the group.
Watching Milind do this made me feel confident enough to try
it. Now I do it often, as really understanding what someone is
telling me is the most important thing. It allows me to correct
misunderstandings and assumptions in the moment instead of
wasting time working in the wrong direction.

Now It’s Your Turn

How often do you hear the word “just” or “simply” and nod in
agreement?

How could you pause the conversation and change it to move in a
different direction?

How often do you use these words yourself, especially when setting
expectations or defining requirements?

https://www.humansystemsinaction.com/lullaby-language/

84

In 1913, Henry Ford installed the first moving assembly line in the
world and reduced the time required to build a car from 12 hours
to 2.5 hours.

Ford’s assembly line used a motorized conveyer belt to move
products through a set of workstations. Each worker had a very
specific job, and that was their only job. Today, it seems like the
most logical thing in the world, but it was a radical and difficult
change for workers.

How Things Were Built Before the Assembly Line

Before the Industrial Revolution, most manufactured products were
made individually by hand. A single craftsman or team of craftsmen

Your Agile Assembly Line
Workers

85

would create each part of a product. They would use their skills and
their tools to create the individual parts. Then, they would assemble
them into the final product, making cut-and-try changes in the parts
until they fit and worked together in a process often referred to as
craft production. 10

You might think that workers loved the assembly line. Less walking
around, more focus on the task at hand, tools and parts located
nearby, and so on.

Maybe some did, but many more hated it. In fact, the Henry Ford
Museum has an entire collection of letters from workers (and their
spouses) about the terrible working conditions and the effects of
the new moving assembly line. Amanda Ross, of the Henry Ford
Museum, has this to say:

“Each task was timed to determine how long it should take. The
assembly line was set to move at that pace. Speed was the key. If
a worker had 6 seconds to complete a task, then he had to get it
done on time every time. Whether he was ready or not, the next car
chassis would be in front of him in 6 seconds.

Hours upon hours of performing the same, mindless task was very
difficult for the workers to accept. Morale was often low. Also, line
work – due to its quick pace and repetitive nature – was dangerous.
In 1916, the Ford Highland Park plant recorded almost 200 severed
fingers and over 75,000 cuts, burns and puncture wounds.

It was the tyrannical motorized assembly line that sparked the
unionization movement that accompanied the industrial revolution.
Aroused and angered by impossible production-line speeds and
work standards, serious safety and health concerns, fears of
unemployment, and overly abusive foremen, the United Automobile

86

Workers Union was at the center of the social and economic
revolution associated with the rise of industrial unionism.” 11

The Tyranny of Velocity

One of the huge changes Ford’s workers had to adjust to was the
relentless pace at which they had to work. Remember, before the
assembly line, they swarmed or mobbed around their work to
complete it. This was called craft production.

Production metrics were simple and valuable for everyone: the
number of cars built per day was what mattered.

But the new assembly lines never slowed or paused. Management
decided how fast they should go after observing and timing workers
at each station. Six seconds here, 20 seconds there, 42 seconds at
the next station…

Managers decide how work is partitioned and what activities are
performed at each station.

Managers decide where each station is placed and how they are
sequenced.

Managers decide what tools and raw materials each station will use.
Managers determine quality standards and metrics for each station.

How each person performed was less important
than how the team performed as a whole.

87

Managers decide how many seconds each station has to complete
the work.

That’s a lot of managerial decisions inflicted on workers.

Imagine Going Through This Change

You’ve spent years assembling cars and learning how to assemble
many different parts of the car. Sure, you love the interior detail
work, but you’re as good at installing engines as anyone. Working
together with your team, you’re proud to build a complete car each
day. Everyone on the team can take credit for the final product. Your
team’s goal is clear: one high-quality car per day.

Then, one day, the plant changes. New equipment is installed, and
you have the title of “Windshield Installer I.” You are escorted to your
workstation where you are told you have thirty seconds to attach
the ten bolts that secure the windshield. You are expected to do five
hundred windshields per day. The work comes at an overwhelming
pace from a motor-driven assembly line. Your only concern is
attaching five thousand bolts per day.

As an experienced car assembler, you see quality problems zoom by,
but no one listens when you point them out. Plus, every second you
take pointing them out means working even faster to catch up and
keep up.

After all, a new windshield arrives every thirty seconds, no matter
what.

It’s easy to see why workers were left feeling worthless and
unappreciated. And why unions formed and workers demanded

88

better working conditions. In fact, it appears assembly lines haven’t
changed much.

Your Agile Assembly Line

Too many Agile teams feel they’re working on an assembly line,
trying to keep up with the pace set by management. This pace,
usually called a team’s “velocity,” may create a virtual assembly
line. Unfortunately, this is turning your Software Engineers into Agile
Assembly Line Workers, and the negative effects are similar to those
experienced by Ford’s workers.

Like Ford, you might pay them well, but your workers will be stuck
with poor working conditions. And like the assembly line workers
of the past, they may decide to unionize, revolt or lash out in other
ways. In fact, my guess is that they already are, even if you haven’t
noticed.

Your Challenge Starts Now

If you lead software teams and some of this smells familiar, I dare
you to share this story with your team and ask, “Is this happening
here? Does it feel like an assembly line?”

This takes tremendous bravery, and it may come at a personal cost,
but I encourage you to take the risk. This challenge might be hard
for a number of reasons: a) you’re afraid of the answer, b) you don’t
think you can change things even if it’s bad, or c) you’re a clueless
boss and your ego has blinded you to the truth.

Your team knows whether you have an Agile assembly line. Ask
them collectively or in your one-on-ones and start collaborating

89

with them to improve their working environment. Your developers –
and your customers – will thank you.

10 https://en.wikipedia.org/wiki/Craft_production
11 https://51154787.weebly.com/negative-impact.html

https://en.wikipedia.org/wiki/Craft_production
https://51154787.weebly.com/negative-impact.html

90

Let’s Stop Learned
Helplessness in Software
Engineering

If your team strives to build quality software, I applaud them.
If your team has created specific standards that ensure quality,
then they are among the top 15% of developers in the world

(based on my experience.)

But if your team recognizes that quality is always subjective,
personal and political, then something amazing has happened.
Not quite there yet? Read on…

See, quality is subjective, not objective. There is no such thing as
objectively high-quality software, yet it’s a common fantasy most
programmers and managers hold to.

Why Software Quality Is So
Confusing (And How We Can
Fix It)

91

Quality is subjective, not
objective. There is no such
thing as objectively high-
quality software.

Defining quality is making a statement about what a person values
at a particular time. Some examples might help:

Novice users may value software that is easy to learn.

• Experienced users may value software that has many shortcut
keys.

• Developers may value software built with modern tools.
• Managers may value software that is ready when it’s needed.
• Clients may value software that costs as little as possible.

Quality is also always political because we cannot make everyone
happy all the time. Instead, we must pick and choose whose
definition of quality we will use. This requires negotiation,
prioritization and discussion between the various parties.

92

The First Step to Improving Quality

First, stop talking about quality in absolute terms. Don’t allow your
developers, users, clients, customers, managers, founders or sales
folks to use fairy-tale language about quality. After all, who could
disagree with someone who states “We need to build good quality
software.” That statement will get everyone’s head nodding, even
though no one has any idea what it means.

However, it’s even worse than that. Everyone will have a different
idea of what it means. Having different ideas about what quality
means is more harmful than having no idea what quality means.
When this happens, each team member will strive to produce
software that matches their personal, unspoken definition of
quality. When you hear someone talking about quality in absolute
terms, stop the conversation and ask whose definition they are
using. Then teach them what you’ve just learned about software
quality. Then you can have a productive discussion about what
quality means to the team, the clients, the users and the managers.

An Illustration from Gardening

When I was twelve, I was a reluctant gardener.

Every year my father would order a dump-truck load of mulch to be
delivered to the front of the house, near the road. Then he’d hand
me a shovel and a couple of wheelbarrows. The algorithm went like
this:

1. I would shovel mulch into the wheelbarrow to fill it.
2. I would push the full wheelbarrow 150 feet to where my father

was spreading mulch.

93

3. He would give me the empty wheelbarrow.
4. Goto Step 1

My father’s definition of quality was simple:

1. Don’t spill the mulch on the ground when you shovel it.
2. Have a full wheelbarrow to him about the time he was out of

mulch.

For many reasons, I did not enjoy this job.
To make it tolerable, I created an additional definition of quality:

1. Fill the wheelbarrow using the fewest number of shovelfuls of
mulch.

My quality rule made the process more interesting and fun for me. It
also made me feel in control of a situation I didn’t enjoy. I thought I
could add my rule to my father’s quality rules without any impact.
It turns out, that was false.

Counting shovelfuls don’t take much time, but creating heaping-
huge-heavy shovelfuls did. Moving heaping-huge-heavy shovelfuls
without spilling caused me to work more slowly. Worse, no matter
how slowly I moved the heaping-huge-heavy shovelfuls, some
mulch spilled on the ground. I was aware of these tradeoffs, but I
thought “No big deal. Look how big my shovelfuls are!”

It wasn’t long before my father noticed that his Quality Rule #2 (“get
mulch to him quickly”) was consistently being violated, so like a
good manager, he decided to check on the worker. He was quite
surprised to see me very slowly moving a heaping 16” tall shovelful
of mulch into the wheelbarrow, spilling about 25% of it on the

94

ground in the process.

Surprised, and upset.

I’ll leave the rest of the story to your imagination, but needless to
say, my Quality Rule got tossed.

Why We Get Confused About Quality

Let me present the concept of a packed phrase.
Words such as quality, performance, complexity and scalability are
packed phrases. Packed phrases are packed with so much potential
information that we miss what’s important, rendering them useless
without unpacking them.

Like lullaby language, packed phrases give us the impression
we’re clearly communicating even when we aren’t. When you hear
someone use a packed phrase, here’s a single, tiny question you can
ask to start the unpacking process:

“Compared to what?”

For example…

“The system needs to be fast.” “Compared to what?”
“The legacy code is filled with bugs.” “Compared to what?”
“The app needs to scale.” “Compared to what?”
“Our process sucks.” “Compared to what?”

Asking this question usually receives one of two responses:
• Information about the attribute the speaker feels is important
• A blank stare

95

Both responses are useful. More information is always useful. But
sometimes new information also contains packed phrases. Don’t
worry, just repeat the question: “Compared to what?”

After doing this two or three times, people will catch on and strive to
give more concrete ideas. Then you can continue your discussion.
And if you get the blank stare?

Just for you, I’m going to break the rules and reveal one of the
Secrets of the Highest Order of Software Consultants.

96

Don’t report me to the grand poobah, okay?

If you get the blank stare… stare back at them.

Stare until it gets awkward, which it will!

Don’t glare, just look.

If no one has spoken after you’ve silently counted to 1000, ask:
“What’s happening for you now?”

This should jiggle them a bit and allow you to resume the
discussion.

Your goal is to help them become more specific in how they think
(and talk) about these abstract concepts. They are probably right
that something isn’t good, but you can’t fix it without a clear
definition.

Once you stop being content with ambiguities, they can stop, too.
This is a huge win–win for everyone.

97

Why do you value
potential customers
more than existing
customers?

The CTO of a leading SaaS approached me to get help with his
software team.

“They have too many bugs,” he said.
“They don’t hit their estimates,” he said.
“They don’t plan their features well,” he said.
“When things go wrong, they blame the product owners. And the
product owners blame them right back.”

After thirty minutes of discussion, we uncovered a few things:
The QA team was being pushed around by the engineering team,
who wanted to ship software fast.

The engineering team was being pushed around by the product

The Trap of Sales-Driven
Development

98

team, who’d been told to create new features.

The product team was being pushed around by the sales team, who
felt they could only close a sale if they promised new features to
each prospect.

The sales team received commissions on new sales but not on
existing customers.

The customer service team was measured by existing customer
satisfaction and the number of people who left the platform.
Finally, I asked, “Why do you value potential customers more than
existing customers?”

Shocked, the CTO realized that’s exactly what they were doing.

The SDD Cycle

We might call this system Sales-Driven Development. The sales
team demands a constant stream of new features that only serve
to close sales deals. What does this have to do with the problem of
“too many bugs”? The current customers are left with engineering
leftovers because the teams aren’t aligned and incentivized to serve
them.

Follow this logic for a moment…

“Why do they have so many bugs?”
“They don’t have time to fix them.”
“Why don’t they have time to fix them?”
“They have to hit the estimates.”
“Why did they give those estimates?”

99

“The product team already promised them to the sales group.”
“Why did the product team promise them?”
“To close a sale, the sales team promised a potential customer it
would be done soon.”
“Why did the sales team make that promise?”
“The customer had to check a box on their RFP.”
“Why is that feature important?”
“We have no idea.”
“How will it be used?”
“We have no clue.”

Bingo.

That is the root of many problems. Teams building software that
no one will use, without a clue why they’re building it. They have
been relegated to digital ditch diggers. Shockingly, the engineering
team still cares about the product and customers! In fact, their
biggest complaint is that they aren’t allowed to fix bugs and make
small improvements that could benefit the thousands of paying
customers they already have. Even in the midst of a terrible system,
engineers still exhibit a strong drive to build high-quality software
that really helps people.

What to Do?

Now that you see who the engineering process is actually serving
(the sales group), decide whether that’s who the engineering
process should serve. Once you know that, align financial incentives
between sales, customer service, product and engineering teams.
Once that’s done, get the heck out of the way. Because when
everyone is pulling in the same direction, things will happen faster
than you can believe.

100

Past situations,
environments and
people taught them
how to act.

Does this sound familiar?
Your team has a Wizard programmer who solves hard
problems but lacks follow-through.

Or maybe a Firefighter who only delivers under pressure.
Or maybe you have a front-end programmer who “can’t figure out
SQL,” or a Lone Wolf who insists on working in isolation until their
code is perfect.

These types of programmers can be great… but they can also drive
you crazy. If you’re like me, you’ve found yourself wishing they were
less stereotypical and trying to figure out how you could get them to
act differently than their “native type.”

The Unexpected Danger of
Typecasting in Engineering
Teams

101

Maybe you’ve also thought, “But what can I do? That’s just who they
are. A leopard can’t change its spots.”

I used to think that way, too.

But after fifteen years of leading software teams, I’ve come
to recognize that it does more harm than good to typecast
programmers.

The biggest danger of typecasting is that it limits the feedback
you can offer members of your team. After all, you wouldn’t ask a
leopard to become a lion. Or a hearing-impaired person to “listen
better.” You wouldn’t ask me, who stands 5-foot 5-inches tall, to
become 6-foot tall.

Asking those things is both pointless and offensive. They are
characteristics that cannot be changed. Our culture is very sensitive
about offending people. Suggesting that people make any change
always risks offending someone.

But when your Wizard flounders with the “boring” parts of a project,
or your Lone Wolf avoids collaborating on a feature, it’s not because
they can’t do those things. It’s because they won’t. And the reason
they won’t is simple. Past situations, environments and people
taught them how to act. We learn from experiences, finding what
leads to success (or failure!).

Okay, once again.

Your Wizard can learn to successfully work on boring projects.
Your Lone Wolf can learn to successfully collaborate.

102

Your Firefighter can learn to successfully plan their work.

And anyone who can learn #&^$ CSS can certainly learn SQL!

Each person can learn to change, but they need your help to do it.

You help them by giving them feedback, not by keeping silent.

You can do this by coaching with words like:

• “I know you can do this.”
• “Here’s how you can approach this.”
• “Here’s how your team would benefit.”
• “Here’s how you’ll personally benefit.”
• “Let’s talk about one small step you could take.”

But as long as you believe “that’s just the way they are,” you’ll never
ask them to change.

Think about your favorite teacher in school. When you struggled
with a subject, did they say, “Oh, you’ll never figure it out. You’re
just not a math | English | science type”? Probably not. Instead, they
probably said, “Keep practicing. Don’t give up. You’ve got this.” They
knew that the material could be learned by anyone who applied
themselves, not just by certain kinds of people. These teachers were
probably your favorite because they pushed you to be better, and
they believed you could achieve more.

In her book Mindset, Carol Dweck, Ph.D., describes two distinct
mindsets that impact how we see ourselves: the fixed mindset and
the growth mindset. Someone with a fixed mindset sees limitations.
Someone with a growth mindset sees challenges.

103

Your job as leader, manager and coach might be to believe what the
other person does not believe. To envision what they cannot yet see.
You need to have a growth mindset about your programmers, even
if they have a fixed mindset about themselves.

Personally, I’ve found that people who believe in me have a
tremendous effect on my belief in myself. Have you found this as
well?

They Didn’t Type Themselves, You Typed Them

While some people will loudly declaim about what type of person
they are, your team members (probably) didn’t label themselves
with these types. In fact, they might not agree with them at all. In
that case, you may have developed a fixed mindset about them. In
this case, it’s you who needs to change perspectives.

It’s easy and convenient to see people through the lens of
stereotypes, and it appears useful at first. After many months of
unsuccessfully prodding my Wizard to finish a project, I approached
my boss about how to handle the issue.

Someone with a fixed mindset believes that if they
are good at something, it’s because they were born
that way. Someone with a growth mindset believes

that if they are good at something, it’s because
they learned through effort and practice.

104

My boss told me, “Jim is a Wizard, and you need to keep your
Wizards happy. Give the project to Jane to finish, and let Jim play
with something else. You don’t want a team full of Wizards, but you
do need one.” Unfortunately, my boss wasn’t right this time.
It’s easy to imagine that great software teams are assembled from
a combination of types, like a recipe, and that all you have to do is
find the right proportions:

1 Wizard
2 Lone Wolves
1 Firefighter
3 Ninjas

Unfortunately, not only is that silly, it’s harmful.
Yet I’ve personally talked to hundreds of engineering leaders who,
when trying to figure out how to deliver a late project, resist the idea

105

of asking someone to work outside their type: “I can’t ask Diane to
help deliver the front-end, she’s more of a Wizard.” Of course, they
can ask Diane to help deliver on the front-end, and she may do a
great job. But they never know because they never ask.

Types Are Not Strengths

Some leaders confuse types with strengths. Strengths-based
leadership, popularized by Gallup13, is not the same thing as
typecasting. Each person brings strengths and weaknesses to a
team. Leaders who only play to people’s strengths never give them
the opportunity to grow. People grow when their team allows
them to use their strengths and challenges them to improve their
weaknesses (and supports them in doing so). The acknowledgment
that no one is perfect and that everyone brings both strengths and
weaknesses to the table creates an environment where it is safe
to work and learn. Perfection is not expected, but growth can be
achieved.

In the same way, some leaders confuse types with communications
styles. Communication styles are formed early in life. Personality
tests, such as the DiSC Profile, 14 may help teams understand each
other better and improve internal communication. Yet, these are
very different from harmful programmer stereotypes that prevent us
from offering constructive and truly useful feedback.

How to Begin

If you have withheld feedback because you’ve typecast someone,
it’s time to think again. Start by considering your own expectations:
• What unspoken expectations do you have of them that you

don’t have of others on the team?

106

• What unspoken expectations do you have of others that you no
longer have of them?

• What opportunities could you give them to grow in a new
direction?

• How can you reset your expectations, and possibly their own,
and encourage them to think outside of their type?

• Is it time to apologize for typecasting and clearly discuss your
expectations?

While the trends of micro-specialization may continue in the job
market, you don’t have to continue to typecast your team members.
Instead, discuss and negotiate expectations with your team and
provide opportunities for them to grow.

With your coaching and encouragement, your programmers can
do the best work of their lives, which will make you the best boss
they’ve ever had.

13 https://www.gallup.com/press/176588/strengths-based-leadership.aspx
14 https://www.discprofile.com/what-is-disc/overview/

https://www.gallup.com/press/176588/strengths-based-leadership.aspx
https://www.discprofile.com/what-is-disc/overview/

107

Does your team eagerly look for opportunities to learn?
Do they frame failure and success as opportunities to grow?

Here’s a true story about what happened when we taught coders to
learn from “play” experiences…

Round One

The Sassy Vagrants were frantic. Their four-foot tall house of cards
was falling over. They refactored, reinforced and reworked the
tower, but still it sagged and swayed. They cheered each other on,
working faster and faster… until time ran out.

9 Lessons from Teams Who
Anticipate Learning

108

They had met all the engineering requirements except one: their
tower must reach four feet high and stand without support. That
was the most important requirement.

Taking their hands off the tower, they watched it slowly topple to
the floor. The look on their faces said it all: “We failed.”

Meanwhile, the Cutting Edge was confident, even… cocky. They’d
met their four-foot mark with apparent ease and were now adorning
their tower with enhancements. Their tower started life as a square
that rose from the floor, but now was, in their words, using an
architecture from “a Japanese apartment building.”

When the time ran out, their tower stood tall, and they all cheered.
Everyone cheered with them, basking in their victory.

Round Two

In this round, the Vagrants decided for a more traditional approach
to architecture, so they spent time looking at other teams designs.
This was perfectly acceptable, but it did cost them some time.

Interestingly enough, the Vagrants were the only team who took the
time to observe other designs before beginning their tower.

After their design review, they did a bit of sketching and planning,

It’s a fundamental part of the leader’s job to create
a place that’s safe to learn, try and grow.

109

and then they got to work.

The Cutting Edge decided to revise their architecture a bit, but not
dramatically, believing their previous design would allow them to
reach the new goal height of eight feet.

As they built, their team was quiet. No one spoke. Each person had a
job to do, and now it was time to get it done.

That is, until the tower was six feet tall, when a loud “Oh, crud!” was
heard.

Their design had reached its natural limits and was swaying
dangerously. It was suggested that Felipe, the youngest team
member, should hold onto the structure while the rest of the team
continued to build upwards.

Their plan was to extend the tower all the way to the ceiling, where
they believed they “could create downward pressure on the tower,
squeezing it between the ceiling and floor, and allowing it to stand
without Felipe’s aid.”

To accomplish this, the Cutting Edge would have to far exceed the
eight-foot requirement, as the room’s ceilings were ten feet high.
Later they would note that “failure wasn’t seriously considered,
because they knew they were good at this.”

The Vagrants chattered as they worked, building, throwing out
ideas, revising designs, planning, gathering materials and laughing.
While the Cutting Edge remained mostly silent during Round Two,
the Vagrants were engaged in continual discussion, encouragement
and idea generation.

110

As the Vagrants’ tower rose, one team member would stand on a
chair to place pieces, while others would encircle the tower, looking
for problems. “Wait, it’s swaying.” “Yes, that looks good here.” “No,
hold on, bend that piece a bit more” were heard by the team.

The Vagrants recognized that the person placing the pieces had the
worst view of the tower, even though they were the only person
“doing actual work.” This created a new informal, yet vital, role on
the team: spotter. If you weren’t placing pieces, you were actively
engaged as a spotter, giving feedback to the team.

The Cutting Edge reached the ceiling and let out a WHOOP! Now all
that was left was stuffing enough pieces between the ceiling and
tower to create downward pressure. Felipe switched arms rapidly as
fatigue set in and a team member mounted a ladder and continued
to build. Everyone looked on in silence, until the team member
announced, “Okay, Felipe, it’s safe to let go.”

“Are you sure?” Felipe asked. “Yes,” the person on the ladder said, “it
seems good from up here.”

Felipe stepped away, rubbing his sore shoulders.

With impossible slowness, the tower leaned, then quivered, as the
bottom pieces strained to hold the downward pressure. The Cutting
Edge watched in silence as the tower slowly toppled under its own
weight.

The Vagrants reached their goal of eight feet with time to spare
and decided to stop. They put a flag on top to celebrate their
achievement and spent the last ten minutes enjoying their coffee
and snack, admiring their handiwork.

111

Our Lessons

The above story is true, and the experience generated many lessons
for the team members as well as the learning leaders.

Here are some of the learnings we experienced together:

1. Success can fool you into believing you can’t fail, encouraging
you to take risks.

2. Failure can encourage you to become more conservative and
take the time to design.

3. Success can give you the impression “We know what we’re
doing”, which can limit the conversation and ideas brought out
during the build phase.

4. Past success may encourage you to take unreasonable risks.

112

5. Past failures can cause a team to be satisfied with
accomplishing the goal and then stopping to rest.

6. The “spotter” role is valuable, especially to success.
7. Individuals can embrace the spotter role once they understand

its value, despite the fact that the spotter isn’t “building”
anything.

8. The person doing the building might have the worst view of the
overall project.

9. Teams that feel they know what they are doing don’t talk to
each other much.

Each of us left with many lessons that day, gained from simple
simulations where we trained our eyes and ears to eagerly
anticipate learning. It’s a fundamental part of the leader’s job to
create a place that’s safe to learn, try and grow. You need not attend
a training, workshop or presentation. Your team’s work provides
ample opportunities to learn each day, if you decide to start looking.

113

Throughout these articles, I mention a number of books that I
particularly like. Here’s the complete information, along with a few
more books I recommend.

Jerry Weinberg, Becoming a Technical Leader: An Organic Problem
Solving Approach (1986), Dorset House Publishing

Johanna Rothman & Esther Derby, Behind Closed Doors: Secrets of
Great Management (2005) Pragmatic Press

Ron Lichty & Mickey Mantle, Managing the Unmanageable (2012)
Addision-Wesley Professional

Kent Beck, Extreme Programming Explained (1999) O’Reilly
Publishing

Edgar H. Schein, Humble Inquiry: The Gentle Art of Asking Instead of
Telling (2013) Berrett–Koehler

Robert Fulghum, All I Really Need to Know I Learned in Kindergarten:
Uncommon Thoughts on Common Things (1988) Villard

Talya N. Bauer, Oxford Handbook of Leader–Member Exchange (2015)
Oxford University Press

Bruce Tulgan, The 27 Challenges Managers Face: Step-by-Step
Solutions to (Nearly) All of Your Management Problems (2014) Jossey-
Bass

Recommended Reading

114

Fred Brooks, The Mythical Man-Month: Essays on Software
Engineering (1975) Addison-Wesely

Kim Scott, Radical Candor: Be a Kick-Ass Boss Without Losing Your
Humanity (2017) Macmillan

Carol S. Dweck, Mindset: The New Psychology of Success (2007)
Ballantine

Camille Fournier, The Manager’s Path (2017), O’Reilly Publishing

115

Whether it’s supporting your developers, holding better one-on-ones, or learning
to really listen, technical management consultant Marcus Blankenship’s essays,
stories, and personal experiences lead the way to better managers, happier
teams, and more productive environments. Between these covers, you’ll find 20
of his best essays, articles and blog posts from 2018. Leading smart people isn’t

always easy, but it doesn’t have to be hard: Marcus shows you how.

© 2019 Marcus Blankenship. All Rights Reserved

t: 541.805.2736

e: marcus@marcusblankenship.com

w: www.marcusblankenship.com

mailto:marcus@marcusblankenship.com
http://www.marcusblankenship.com

